Aju: struktuur ja funktsioonid, üldine kirjeldus

Aju on kesknärvisüsteemi (CNS) peamine kontrollorgan. Paljude erinevate valdkondade spetsialistid, nagu psühhiaatria, meditsiin, psühholoogia ja neurofüsioloogia, on oma struktuuri ja funktsioonide uurimiseks töötanud üle 100 aasta. Hoolimata selle struktuuri ja komponentide heast uuringust on ikka veel palju küsimusi töö ja protsesside kohta, mis toimuvad iga sekundi järel.

Kus asub aju?

Aju kuulub kesknärvisüsteemi ja asub kolju süvendis. Väljaspool on see kolju luudega usaldusväärselt kaitstud ja sees on see ümbritsetud 3 kestaga: pehme, arahnoidne ja kindel. Seljaaju vedelik - tserebrospinaalvedelik ringleb nende membraanide vahel - tserebrospinaalvedelik, mis toimib amortisaatorina ja takistab keha raputamist väikeste vigastustega.

Inimese aju on süsteem, mis koosneb omavahel ühendatud osakondadest, mille iga osa vastutab konkreetsete ülesannete täitmise eest.

Selleks, et mõista aju lühikirjelduse toimimist, ei piisa sellest, kuidas see toimib, siis tuleb kõigepealt üksikasjalikult uurida selle struktuuri.

Mis aju vastutab?

See organ, nagu seljaaju, kuulub kesknärvisüsteemi ja mängib vahendaja rolli keskkonna ja inimkeha vahel. Sellega viiakse läbi isekontroll, teabe reprodutseerimine ja meeldetuletus, kujundlik ja assotsiatiivne mõtlemine ning muud kognitiivsed psühholoogilised protsessid.

Akadeemiku Pavlovi õpetuste kohaselt on mõtte kujunemine aju funktsioon, nimelt suurte poolkerakoorede koor, mis on närvisüsteemi kõrgeimad organid. Aju, limbiline süsteem ja mõned ajukoorme osad vastutavad erinevat tüüpi mälu eest, kuid kuna mälu võib olla erinev, ei ole võimalik selle funktsiooni eest vastutavat konkreetset piirkonda isoleerida.

Ta vastutab keha autonoomsete elutähtsate funktsioonide juhtimise eest: hingamine, seedimine, sisesekretsiooni- ja eritussüsteemid ning kehatemperatuuri reguleerimine.

Et vastata küsimusele, mida aju täidab, tuleb kõigepealt tinglikult jagada need osadeks.

Eksperdid tuvastavad aju kolm peamist osa: esi-, kesk- ja romboidne (tagumine) osa.

  1. Esikülg täidab kõrgeimaid psühhiaatrilisi funktsioone, nagu õppimisvõime, inimese iseloomu emotsionaalne komponent, tema temperament ja keerulised refleksiprotsessid.
  2. Keskmine on vastutav sensoorsete funktsioonide ja sissetuleva teabe töötlemise eest kuulmis-, nägemis- ja puudutusorganitest. Selles paiknevad keskused suudavad reguleerida valu ulatust, kuna halli aine teatud tingimustes võib toota endogeenseid opiaate, mis suurendavad või vähendavad valu lävi. Samuti mängib see kooriku ja aluseks olevate vaheseinte vahel dirigenti. See osa kontrollib keha erinevate sünnipärane reflekside kaudu.
  3. Teemant- või tagumised, vastutavad lihastoonuse, keha koordineerimise eest kosmoses. Läbi selle viiakse läbi erinevate lihasrühmade sihikindel liikumine.

Aju seadet ei saa lihtsalt lühidalt kirjeldada, sest iga selle osa sisaldab mitmeid sektsioone, millest igaüks täidab teatud funktsioone.

Mida näeb inimese aju välja?

Aju anatoomia on suhteliselt noor teadus, kuna see on pikka aega keelatud seaduste tõttu, mis keelavad inimese elundite ja pea avamise ja uurimise.

Aju topograafilise anatoomia uurimine peapiirkonnas on vajalik erinevate topograafiliste anatoomiliste häirete täpseks diagnoosimiseks ja edukaks raviks, näiteks: kolju-, vaskulaar- ja onkoloogiliste haiguste vigastused. Et ette kujutada, mida GM inimene näeb välja, peate kõigepealt uurima nende välimust.

GM on geelistunud kollaka värvi mass, mis on ümbritsetud kaitsekestaga, nagu kõik inimkeha organid, koosnevad 80% veest.

Suured poolkerad hõivavad praktiliselt selle elundi mahtu. Nad on kaetud halli ainena või koorega - inimese ja selle sisemise neuropsühhilise aktiivsuse kõrgeima organiga, mis koosneb närvilõpmete protsessidest. Poolkera pindalal on keeruline muster, mis tuleneb erinevatest suundadest ja nende vahelisest rullikust. Nende konvolutsioonide kohaselt on tavaline jagada need mitmeks osakonnaks. On teada, et iga osa täidab teatud ülesandeid.

Et mõista, mida inimese aju näeb välja, ei piisa nende väljanägemisest. On mitmeid uuringumeetodeid, mis aitavad aju uurida sektsiooni sisemusest.

  • Sagittal. See on pikisuunaline lõik, mis läbib inimese pea keskpunkti ja jagab selle kaheks osaks. See on kõige informatiivsem meetod, mida saab kasutada selle elundi erinevate haiguste diagnoosimiseks.
  • Aju eesmine sisselõige näeb välja nagu suurte lobide ristlõige ja võimaldab meil kaaluda fornixi, hipokampust ja corpus callosum'i, samuti hüpotalamust ja talamusi, mis kontrollivad keha elutähtsaid funktsioone.
  • Horisontaalne lõikamine. Võimaldab teil kaaluda selle keha struktuuri horisontaaltasandil.

Aju anatoomia, samuti inimese pea ja kaela anatoomia on mitmel põhjusel üsna keeruline uurida, sealhulgas asjaolu, et nende kirjeldamiseks on vaja suurt hulka materjali ja head kliinilist koolitust.

Kuidas inimese aju

Teadlased kogu maailmas uurivad aju, selle struktuuri ja funktsioone. Viimastel aastatel on tehtud palju olulisi avastusi, kuid seda kehaosa ei ole veel täielikult arusaadav. See nähtus on seletatav keerukusega uurida aju struktuuri ja funktsioone kolju eest eraldi.

Aju struktuurid omakorda määravad selle talituste ülesanded.

On teada, et see organ koosneb närvirakkudest (neuronitest), mis on omavahel seotud kiudude protsesside kimbudega, kuid kuidas nad samaaegselt üheainsa süsteemina suhtlevad, ei ole veel selge.

Aju struktuuri uurimine, mis põhineb kolju sagitaalse sisselõike uuringul, aitab uurida jaotusi ja membraane. Selles joonisel on näha ajukooret, suurte poolkera keskmist pinda, pagasiruumi, väikeaju ja korpuskallust, mis koosneb pehmest, varrest, põlvest ja nokkust.

GM on kaitstud väljastpoolt usaldusväärselt kolju luudega ja 3-sse luukestega: tahke arahnoidne ja pehme. Igal neist on oma seade ja täidetakse teatud ülesandeid.

  • Sügav pehme kest hõlmab nii seljaaju kui ka aju ning samal ajal siseneb kõigi suurte poolkera lõikudesse ja soonedesse ning selle paksus on veresooned, mis toidavad seda organit.
  • Arahnoidmembraan eraldatakse esimesest subarahnoidaalsest ruumist, täis tserebrospinaalvedelikku (tserebrospinaalvedelik), see sisaldab ka veresooni. See kest koosneb sidekudest, millest filamentsed hargnemisprotsessid (kiud) lahkuvad, nad on kootud pehmesse kesta ja nende arv suureneb koos vanusega, tugevdades seeläbi sidet. Vahel. Arachnoidse membraani viljakasvatus tõuseb dura mater sinuste lumenisse.
  • Kõva kest või pachymeninks koosneb sidekoe ainest ja sisaldab 2 pinda: ülemine, veresoonte küllastunud ja sisemine, mis on sile ja läikiv. See külg paheneb mullaga ja väljastpoolt kolju. Tahke ja arahnoidse kesta vahel on kitsas ruum, mis on täidetud väikese koguse vedelikuga.

Terve inimese ajus ringleb umbes 20% kogu tagumiste ajuarterite kaudu voolavast kogumahust.

Aju saab visuaalselt jagada 3 põhiosaks: 2 suurt poolkera, pagasiruumi ja väikeaju.

Hall aine moodustab ajukoore ja katab suurte poolkera pindade ning selle väike kogus tuumade kujul paikneb mullaväljas.

Kõigis aju piirkondades on vatsakesi, mille õõnsustes liigub aju seljaaju vedelik. Samal ajal siseneb neljanda vatsakese vedelik subarahnoidaalsesse ruumi ja peseb seda.

Aju areng algab isegi loote emakasisese leidmise ajal ja lõpuks moodustub see 25-aastaselt.

Peamised ajuosad

Piltidest saab uurida, mida aju koosneb ja tavalise inimese aju koosseis. Inimese aju struktuuri saab vaadelda mitmel viisil.

Esimene jagab selle komponendid, mis moodustavad aju:

  • Viimast esindavad 2 suurt poolkera, mis on ühendatud korpuskutsega;
  • vaheühend;
  • keskkond;
  • piklik;
  • selle tagaosa, kus on mündi oblongata, väikeaja ja sild lahkuvad sellest.

Samuti saate tuvastada inimese peamise osa, nimelt sisaldab see kolme suurt struktuuri, mis hakkavad arenema embrüonaalse arengu ajal:

Mõnedes õpikutes jaguneb ajukooreks tavaliselt lõigud, nii et igal neist on kõrgemal närvisüsteemil teatud roll. Sellest tulenevalt eristatakse eesjõu järgmisi osi: eesmise, ajalise, parietaalse ja okcipitaalse tsooni.

Suured poolkerad

Kõigepealt vaadake aju poolkera struktuuri.

Inimese lõpuaeg kontrollib kõiki elutähtsaid protsesse ja jagab keskne sulcus aju kaheks suureks poolkeraks, mis on kaetud koorega või halli ainega, ja nende sees on valge aine. Nende keskel Gyrus kesklinna sügavamal liidab nad korpuskollokumiga, mis toimib teiste osakondade vahelise ühendava ja edastava infoühendusena.

Hallainete struktuur on keeruline ja sõltub kohast 3 või 6 rakkude kihti.

Iga osa vastutab teatud funktsioonide täitmise eest ja koordineerib jäsemete liikumist, näiteks parempoolne pool töötleb mitteverbaalset informatsiooni ja vastutab ruumilise orientatsiooni eest, samas kui vasakpoolne on spetsialiseerunud vaimsele tegevusele.

Igal poolkeral eristavad eksperdid 4 tsooni: eesmine, okcipital, parietaalne ja ajaline, täidavad teatud ülesandeid. Eriti vastutab ajukoorme parietaalne osa visuaalse funktsiooni eest.

Teadust, mis uurib ajukoorme üksikasjalikku struktuuri, nimetatakse arhitektonikaks.

Medulla oblongata

See osa on osa aju varrast ja on ühenduseks seljaaju ja terminali segmendi vahel. Kuna tegemist on üleminekuteguriga, ühendab see seljaaju omadusi ja aju struktuuri. Selle sektsiooni valget materjali esindavad närvikiud ja hall - tuumade kujul:

  • Oliiviõli tuum on väikeaju täiendav element, vastutab tasakaalu eest;
  • Retikulaarne moodustumine ühendab kõik sensoorsed organid mullaga ja on osaliselt vastutav närvisüsteemi teatud osade töö eest;
  • Kolju närvide tuumaks on: glossofarüngeaalne, ekslemine, lisavarustus, hüpoglossalid;
  • Hingamise ja vereringe tuumad, mis on seotud vaguse närvi tuumadega.

See sisemine struktuur on tingitud aju varre funktsioonidest.

See vastutab organismi kaitsereaktsioonide eest ja reguleerib olulisi protsesse, nagu südamelöögid ja vereringet, mistõttu selle komponendi kahjustamine põhjustab kohest surma.

Pons

Aju struktuur sisaldab poneid, see on seos ajukoorme, väikeaju ja seljaaju vahel. See koosneb närvikiududest ja hallist ainest, lisaks on sild peaaju peajuhi juhina.

Midbrain

Selles osas on keeruline struktuur ja see koosneb katusest, rehvi keskjoonest, Sylvia akveduktist ja jalgadest. Alumisest osast piirneb see tagumisest osast, nimelt ponsidest ja väikeajast, ning ülaosas paikneb terminali külge ühendatud vahe aju.

Katus koosneb neljast mäest, mille sees paiknevad südamikud, nad on keskused, mis tajuvad silma ja kuulmisorganite saadud teavet. Seega kuulub see osa informatsiooni saamise eest vastutavale alale ja viitab iidsetele struktuuridele, mis moodustavad inimese aju struktuuri.

Aju

Aju on peaaegu kogu seljaosa ja kordab inimese aju struktuuri aluspõhimõtteid, see tähendab, et see koosneb kahest poolkerast ja nende omavahel ühendatud paaritu moodustumisest. Ajujälgede hobuste pind on kaetud halli ainega ja nende sees on valge, lisaks moodustab poolkera paksuses hall aine 2 südamikku. Valge aine, millel on kolm paari jalgu, ühendab väikeaju ajurünnaku ja seljaajuga.

See aju keskus vastutab inimeste lihaste motoorse aktiivsuse koordineerimise ja reguleerimise eest. Samuti säilitab see ümbritsevas ruumis teatud asendi. Vastutab lihaste mälu eest.

Aju koore struktuur on üsna hästi uuritud. Niisiis, see on keeruline mitmekihiline struktuur, mille paksus on 3-5 mm, mis katab suurte poolkera valge materjali.

Neuronid kiudude protsesside kimpudega, afferentsed ja efferentsed närvikiudud, glia moodustavad ajukoore (annab impulsside edastamise). Selles on 6 kihti, erineva struktuuriga:

  1. granuleeritud;
  2. molekulaarsed;
  3. välimine püramiid;
  4. sisemine granuleeritud;
  5. sisemine püramiid;
  6. viimane kiht koosneb spindli nähtavatest rakkudest.

See kulub umbes poolele poolkerakeste mahust ja selle ala tervel inimesel on umbes 2200 ruutmeetrit. vaata Koorme pind on kaetud vagudega, mille sügavus on üks kolmandik kogu pindalast. Mõlema poolkera vagude suurus ja kuju on rangelt individuaalsed.

Ajukoor moodustati suhteliselt hiljuti, kuid on kogu kõrgema närvisüsteemi keskpunkt. Eksperdid tuvastavad oma koostises mitu osa:

  • neocortex (uus) põhiosa katab rohkem kui 95%;
  • archicortex (vana) - umbes 2%;
  • paleokortex (iidne) - 0,6%;
  • vahekoor on 1,6% kogu koorest.

On teada, et funktsioonide paiknemine ajukoores sõltub närvirakkude asukohast, mis püüavad ühte tüüpi signaale. Seetõttu on kolm peamist tajutsooni:

Viimane piirkond on rohkem kui 70% koorest ja selle keskne eesmärk on kahe esimese tsooni tegevuse koordineerimine. Ta vastutab ka anduri tsooni andmete vastuvõtmise ja töötlemise ning selle teabe põhjustatud sihipärase käitumise eest.

Aju-ajukoorme ja mulla vahel on oblongata subortex või erinevalt - subkortikaalsed struktuurid. See koosneb visuaalsetest cuspsidest, hüpotalamusest, limbilisest süsteemist ja muudest ganglionidest.

Peamised aju funktsioonid

Aju peamised funktsioonid on keskkonnast saadud andmete töötlemine, samuti inimkeha liikumise ja selle vaimse aktiivsuse kontrollimine. Iga aju osa vastutab teatud ülesannete täitmise eest.

Medulla oblongata kontrollib keha kaitsefunktsioonide toimimist, näiteks vilkumist, aevastamist, köha ja oksendamist. Ta kontrollib ka teisi refleksseid elulisi protsesse - hingamist, sülje eritumist ja maomahla, neelamist.

Ponside abil viiakse läbi silmade ja näo kortse koordineeritud liikumine.

Aju on kontroll keha motoorse ja koordineeriva aktiivsuse üle.

Keskjooni esindab pedicle ja tetrachromy (kaks kuuldavat ja kahte optilist mäe). Seeläbi vastutab silma lihaste eest kosmose orientatsioon, kuulmine ja nägemise selgus. Vastutab refleksi pea eest stiimuli suunas.

Dienkefaloon koosneb mitmest osast:

  • Talamus vastutab meeli kujundamise eest, nagu valu või maitse. Lisaks juhib ta inimeste elu puutetundlikku, kuuldavat, maitsvat tunnet ja rütmi;
  • Epithalamus koosneb epifüütist, mis kontrollib igapäevaseid bioloogilisi rütme, jagades valguse päeva ärkveloleku ajal ja terve une ajal. See on võimeline tuvastama valguse laineid kolju luude kaudu, sõltuvalt nende intensiivsusest, toodab sobivaid hormone ja kontrollib inimorganismi ainevahetusprotsesse;
  • Hüpotalamus vastutab südame lihaste töö, kehatemperatuuri normaliseerumise ja vererõhu eest. Sellega antakse signaali stressihormoonide vabastamiseks. Vastutab nälja, janu, rõõmu ja seksuaalsuse eest.

Hüpofüüsi tagaosa asub hüpotalamuses ja vastutab hormoonide tootmise eest, millest sõltuvad puberteed ja inimese reproduktiivsüsteemi toimimine.

Iga poolkera vastutab oma konkreetsete ülesannete täitmise eest. Näiteks koguneb õige suur poolkera iseenesest andmed keskkonna ja sellega suhtlemise kogemuse kohta. Reguleerib jäsemete liikumist paremal.

Vasakpoolsel poolkeral on kõnekeskus, mis vastutab inimese kõne eest, samuti kontrollib analüütilist ja arvutuslikku tegevust ning selle tuumaks on abstraktne mõtlemine. Samamoodi kontrollib parem külg jäsemete liikumist.

Aju-koore struktuur ja funktsioon sõltuvad otseselt üksteisest, seega jaotavad konvulsioonid tinglikult selle mitmeks osaks, millest igaüks täidab teatud toiminguid:

  • ajaline lõhe, kontrollib kuulmist ja võlu;
  • nägemise osa reguleerib nägemist;
  • parietaalses vormis, puudutuses ja maitses;
  • eesmised osad vastutavad kõne, liikumise ja keerukate mõtlemisprotsesside eest.

Limbiline süsteem koosneb lõhnakeskustest ja hipokampusest, mis vastutab keha muutmise ja keha emotsionaalse komponendi kohandamise eest. Selle abil luuakse püsivaid mälestusi tänu helide ja lõhnade seotusele teatud ajaperioodil, mille jooksul toimusid sensuaalsed šokid.

Lisaks kontrollib ta vaikset une, andmete säilitamist lühi- ja pikaajalises mälus, intellektuaalset tegevust, sisesekretsiooni- ja autonoomse närvisüsteemi juhtimist ning osaleb reproduktsiooninõude loomisel.

Kuidas inimese aju

Inimese aju töö ei lõpe isegi unenäos, on teada, et koomal on ka mõned osakonnad, mida tõestavad nende lood.

Selle keha peamine töö on tehtud suurte poolkera abil, millest igaüks vastutab teatud võime eest. On täheldatud, et poolkera suurused ja funktsioonid ei ole ühesugused - paremal poolel on visualiseerimine ja loominguline mõtlemine, tavaliselt rohkem kui vasakpoolne, vastutav loogika ja tehnilise mõtlemise eest.

On teada, et meestel on rohkem aju massi kui naistel, kuid see funktsioon ei mõjuta vaimseid võimeid. Näiteks oli see näitaja Einsteinis keskmisest madalam, kuid tema parietaalne tsoon, mis vastutab teadmiste ja piltide loomise eest, oli suur, mis võimaldas teadlasel arendada suhtelisuse teooriat.

Mõned inimesed on varustatud supervõimega, see on ka selle asutuse teenistus. Need funktsioonid väljenduvad kiires kirjutamises, lugemises, fotomälus ja muudes kõrvalekalletes.

Ühel või teisel viisil on selle organi aktiivsus inimkeha teadlikul kontrollimisel ülimalt tähtis ning ajukoorme olemasolu eristab meest teistest imetajatest.

Teadlaste sõnul tekib pidevalt inimese ajus

Aju psühholoogilisi võimeid uurivad spetsialistid usuvad, et biokeemiliste voolude tulemusena tehakse kognitiivseid ja vaimseid funktsioone, kuid seda teooriat küsitletakse praegu, sest see organ on bioloogiline objekt ja mehaanilise tegevuse põhimõte ei võimalda selle olemust täielikult teada.

Aju on mingi organismi rool, mis täidab igapäevaselt suurt hulka ülesandeid.

Aju struktuuri anatoomilisi ja füsioloogilisi omadusi on uuritud juba aastakümneid. On teada, et sellel elundil on eriline koht inimese kesknärvisüsteemi (kesknärvisüsteemi) struktuuris ja selle omadused on iga inimese jaoks erinevad, mistõttu on võimatu leida 2 võrdselt mõtlemist.

Inimese aju pilt

Seda inimese (ja loomade) organit võib ehk nimetada peamiseks. Süda ajal
täidab lihtsa funktsiooni - verd pumbata, suur vastutus langeb aju: mõtlema,
arendama, salvestage omanik. Aju pakub inimeste mõtlemist ja on äärmiselt raske
täielikult aru, et me ei ole veel võimelised. Neurokirurgid kogu maailmas võitlevad üle
kõige raskem ülesanne arusaamades hallide ainete tööst ja selles valdkonnas
pidev areng. Sellele vaatamata ei olnud võimalik pea (ja aju) siirdada inimesele

Mis juhtub aju null raskusega?

Pole saladus, et NASA on võtnud hirmuäratava ülesande: saata 2030. aastate jooksul inimesed Marsi. Miks valdav? Sest piisab, kui mõista, et regulaarne reis võtab aega kolm kuni kuus kuud ja meeskond peab planeedile jääma kuni kaks aastat enne planeetide joondamist, mis võimaldab tal koju tagasi pöörduda. See tähendab, et astronaudid peavad elama vähendatud (mikro) gravitatsiooni tingimustes vähemalt kolm aastat - see on oluliselt kõrgem kui Venemaa kosmonauti Valeri Polyakovi poolt kehtestatud katkematu ruumis viibimise rekord: 438 päeva.

Esmakordselt käivitati kõige võimsam inimese aju tööd simuleeriv superarvuti

Tänapäeval kasutatakse superarvuteid mitmesuguste ülesannete täitmiseks: erinevatest matemaatilistest arvutustest ja andmeplokkide töötlemisest farmatseutiliste ühendite modelleerimiseks ja tehisintellekti tööks. Siiski on olemas arvuteid, mille eesmärk on inimese aju „arhitektuuri” kõige täpsem reprodutseerimine. Ja kõige võimsam tänane neuromorfne superarvuti käivitati hiljuti esimest korda.

Arenenud vahendid neurodegeneratiivsete haiguste immunoteraapiaks

On juba ammu teada, et paljude aju neurodegeneratiivsete protsesside (sealhulgas Alzheimeri tõve) areng on amüloidvalgu akumulatsioon, mis põhjustab nn amüloidplaatide moodustumist ja kognitiivsete funktsioonide halvenemist. Kuid Gladstone'i instituudi uurijate rühm selle protsessi käigus ei tabanud mitte ainult teist haiguste arendamise viisi, vaid ka välja töötanud uue vahendi ajukahjustuste raviks.

Miks pean aju treenima

Paljud inimesed ütlevad sageli, et aju ei vaja koolitust - nad ütlevad, et see töötab ilma selleta. Ja arusaam on kahjuks liiga hilja, kui vananemisprotsessi algusest tulenevalt ei saada teavet nii kergesti kui varem, tundub tähelepanu kõrvale juhtimine ning isegi lihtsamate otsuste tegemiseks kulub palju rohkem aega. Aju on vaja koolitada, mida juhtivad eksperdid on korduvalt kinnitanud, ja seda saab teha erinevatel viisidel.

Ajus leidis "unerežiimi" eest vastutav tsoon

Kakskümmend aastat tagasi avastas Bostonis asuva Beth Israel Deaconessi meditsiinikeskuse uurijate rühm, kes on Harvardi meditsiinikooli treeninghaigla, ajus kogunenud närvirakke, mis teadlaste sõnul võivad olla omamoodi "lülitid", mis tõlkivad aju unerežiimis. Ja alles hiljuti kinnitati see hüpotees.

Teadlased esmakordselt taastasid Alzheimeri tõve mälu


Üks Alzheimeri tõve kõige ebameeldivamaid ilminguid on mälu ja mälestuste järkjärguline kaotamine, mis muudab radikaalselt inimese kogu isiksust. Siiski on võimalik, et peame sellega varsti toime tulema. Vähemalt vastavalt aruannetele suutis Prantsusmaalt ja Indiast pärit ekspertide rühm Alzheimeri tõvega laboratoorsete loomade pikaajalise mälu täielikult taastada ja taastada katse ajal terve aju katkenud närviühendused.

Leitud viis ühe inimese mõtete edastamiseks teisele

Aju signaali ülekandmine ühelt inimeselt teisele on juba ammu kirjeldatud mitmesugustes fantastilistes töödes ja nagu sageli juhtub, on tehnoloogia osutunud üsna realiseeritavaks. Lõppude lõpuks on aju aktiivsust registreerivad andurid juba mõnda aega leiutatud. Ja kui signaali saab püüda, siis pole selle edastamine keeruline. Peamine raskus seisneb aga selles, kuidas see suunatud signaal paneb sind teise isiku mõistma ilma suulise kontaktita. Ja tundub, et Washingtoni ülikooli eksperdid Seattle'is on leidnud võimaluse seda teha, andes ühe inimese mõtteid teisele. Lisaks on teadlased kindlad, et tulevikus saab seda teha ka Interneti kaudu.

Aju rakusurm peatub... ämblik mürk

Mõned kesknärvisüsteemi neurodegeneratiivsed haigused põhinevad aju retseptorite aktiivsuse häiretel ja kui need muutused korrigeeritakse, ületatakse ka nendega seotud haigused. Neuroni väljaande kohaselt saadeti rahvusvahelisele teadlaste rühmale uurimus. Ja nagu selgus, aitab orb-web spideri mürk selles.

Milline osa meie ajust vastutab lugude tegemise eest?

Vaatamata suhteliselt heale teabele kesknärvisüsteemi töö ja paljude füsioloogiliste protsesside kohta käivate teadmiste kohta, on endiselt ebaselge, kuidas ja kus täpselt teatud funktsioonide moodustumine toimub. Kuid nüüd, tänu McMasteri ülikooli (Kanada) neuroteadlaste jõupingutustele, on meie kesknärvisüsteemis üks "valge täpp" muutunud vähem tänu aju piirkondade kindlakstegemisele, mis vastutavad lugude leiutamise eest.

Keskused, kes vastutavad ajus leitud mälestuste vabastamise eest

Suur hulk uuringuid, mille eesmärk on uurida mälu ja mälu protsesse. Ja üldiselt uuritakse neid üsna hästi. Aga kuidas toimub „füsioloogilise” unustamisprotsessi (mis ei ole seotud neurodegeneratiivsete protsessidega) väga vähe. Ja mitte nii kaua aega tagasi avastas rühm teadlasi ajuosakonna, mis vastutab mälu kustutamise eest.

Uut tüüpi aju neuroneid avastati

Aju on üks salapärasemaid inimorganeid. Ja mitte niivõrd kaua aega tagasi oli ta võimeline teadlasi üllatama, sest Ungari ja Ameerika Ühendriikide bioloogide rühm avastas ühise uuringu raames ajukoores uue tüüpi neuroni, mille olemasolu ei olnud isegi varem kahtlustatud.

Aju sünapsi üksikasjalik kaart avas loengu mõtlemise müsteeriumi

Kujutlege galaktika iga tärniga kaarti. Kaart on nii üksikasjalik, et see näitab, kuidas iga täht näeb, milline see koosneb, milline teine ​​täht on seotud kosmose füüsika suurte seadustega. Kuigi meil ei ole veel sellist astronoomilist kaarti taevast, tänu eelmisel nädalal Neuronis avaldatud monumentaalsele uuringule on meil sarnane aju kaart.

Loodud närvivõrk, mis jäljendab aju struktuuri

Hoolimata asjaolust, et terminit „närvivõrk” saab rakendada nii anatoomilisele struktuurile kui ka arvutisüsteemile, on neuruvõrkudel ikka veel rohkem erinevusi kui sarnasused. Ja ennekõike on see tingitud aju närvirakkude äärmiselt keerulisest struktuurist. Kuid asjad võivad muutuda tänu riikliku standardite ja tehnoloogia instituudi teadlaste arengule. Nende leiutis võib olla uus etapp närvivõrgu tehnoloogia arendamisel.

Avastati teadvuse eest vastutavad neuronid

Viimase sajandi jooksul on neurofüsioloogia edenenud kaugele, kuid kuidas enamik ajufunktsioonidest on endiselt mõistatus. Kuid on täiesti võimalik, et üks inimese närvisüsteemiga seotud saladus on muutunud vähem. Lõppude lõpuks avastas hiljuti Ameerika Ühendriikide teadlaste rühm neuronid, mis toetavad kesknärvisüsteemi ergastamist. Või kui see on lihtsam, vastutavad nad meie teadvuse toetuse eest ja kui ma seda ütlen, siis "töö".

Kas teil on entsefalogramm? Võib-olla võetakse tulevikus biomeetrilisi andmeid

Elektroenkefalograafia - pikaajaline meetod aju uurimiseks. Tundub, kuidas ta saab üllatada? Nagu selgus, väga, väga. Näiteks töötas New Yorgi riiklikus ülikoolis Buffalo ülikooli inseneri- ja rakendusfüüsika kooli teadlaste rühm välja süsteemi, mis identifitseerib isiku EEG omaduste järgi.

Suurimad saladused: mis on teadvus?

Mis on teadvus? Jah, tegelikult kõik. See on peaga kinni peidetud meloodia, šokolaadibarna magusus, hambavalu piinav valu, metsik armastus, teadmine, et kõik meeli kunagi välja läheb. Nende kogemuste päritolu ja olemus, mida mõnikord nimetatakse ka qualiaks, on olnud varajane antiikajast kuni tänapäevani. Paljud kaasaegsed filosoofid, kes analüüsivad meelt, sealhulgas Daniel Dennett Tufts Ülikoolist, leiavad, et teadvuse olemasolu on niivõrd silmapaistev solvang mõttetu aine ja tühjuse universumile, et nad tunnistavad seda illusiooniks. See tähendab, et nad eitavad qualia olemasolu või väidavad, et teadus seda kunagi ei mõista.

Teadlased taastavad seljaaju tüvirakkudega

Uute ravimeetodite väljatöötamisel kasutatakse üha enam tüvirakke. Näiteks portaali Neurosciencenews toimetuse kohaselt oli Austraalia Monashi Ülikooli teadlaste rühm võimeline taastama halvatud akvaariumikala selgroo kahjustatud piirkondades neuronid, tagastades loomale võime liikuda.

# video | MIT õppis juhtima ajuimpulssidega robotit

See ei ole esimene aasta, mil juhtivad maailma eksperdid on arenenud närviliideste loomisel. Hiljuti õnnestus Massachusettsi Tehnoloogiainstituudi (MIT) tehisintellekti laboratooriumi (MIT) eksperdid, kes olid võimelised juhtima robotit ajuimpulsside abil, ja selleks kasutati üsna kättesaadavaid tehnoloogiaid.

Kuidas koeraga suhtlemine mõjutab inimkeha

Paljud alustavad koera oma kodudes ja saavad hämmastavat naudingut nendega suhtlemisel ja nendega kõndimisel. See peab olema teaduslikult selgitatud ja see ei ole üldse keeruline. Tema andis Meg Olmert, raamatu “Tehtud üksteisele: loomade bioloogia” autor, meie kolleegide poolt ettevõttes Insider'i koostatud materjalist. Ta rääkis koerte ja inimeste vaheliste suhete ajaloost ning nende suhetest inimese kehale.

10 teaduslikku seletust paranormaalsetest nähtustest - alates deemonitest kuni vaimudeni

Me elame ratsionaalses maailmas. Maailmas, kus ei ole kummitusi, inglid ja deemonid, ja põrandalaudade öised õudused on tingitud halvasti asetatud parkettidest, mitte hiljuti surnud vanaema külastamisest. Aga kui kummitused ja kõik muu ei ole reaalne, siis miks on nii palju inimesi veendunud, et nad kuidagi nägid midagi muud maailmas? Vastus sellele küsimusele seisneb meie aju omadustes. Teadus suudab leida vastuse mõnikord väga kummalistele küsimustele, kuid paranormaalsete nähtuste puhul osutub nende sündmuste teaduslik põhjendus mõnikord veelgi fantastilisemaks kui müüdid ise.

Neanderthalaste elavad “mini-aju” ütlevad teile, mis teeb meie aju eriliseks

Ta eraldas DNA Egiptuse muumiast. Ta avastas Denise rahva, surnud iidse liigi, sekveneerides DNA väikese luu fragmenti. Ta juhtis laiaulatuslikku uuringut neandertali genoomi taastamise kohta - ja leidis jälgi oma geenidest, mis praegu veel mõnes meist peidavad. Nüüd soovib Rootsi geneetik dr Swante Paabo taas paleontoloogiat ümber pöörata - seekord kavatseb ta kasvatada neandertali tüvirakke väikestes aju organellides katseklaasis.

"Vanaema, miks sa vajad nii suurt aju?" Ja tõesti, miks?

Enamikus loomades on aju suurus proportsionaalne keha suurusega - suuremate kehadega liikidel on suuremad aju. Inimestel on aju kuus korda suurem kui meie keha suuruse alusel. See on kummaline, sest aju maksab meile kallid - see põletab 20% keha energiast, moodustades vaid 4% selle massist. Kuna evolutsioon kipub liiga palju eemaldama, siis miks jätaks ta sellised suured, rabed aju? On palju erinevaid eeldusi, mille hulgas on peamised põhjused, miks stimuleeritakse sotsiaalset suhtlemist peamise liikumapaneva jõuna. Kuid ajakirjas Nature avaldatud uus uuring väidab selle idee vastu ja näitab, et inimese aju laienemine oli tõenäoliselt põhjustatud ökoloogiast.

Väike käivitus võib mööduda maskist ja Zuckerbergist, ühendades meie aju arvutiga

Kaasaegsed tehnoloogiad, nagu autonoomsed elektriautod ja lendavad taksod, muudavad kindlasti maailma. Kuid miski ei mõjuta meie tulevikku kui tehnoloogiat, mis ühendab inimese aju arvutiga. On teada, et Ilon Musk ja Mark Zuckerberg võitlevad selle ülesande üle, kuid on ikka veel kaugel nende ideede realiseerimisest. Kuid noor algus Nuro võib võtta palju vähem aega.

Mängijad aitavad teadlastel aju uurida ja avastada uusi neuronitüüpe

Meie maailmas näevad paljud inimesed videomänge ikka veel kergemeelsetena. Kuid see pole nii kaugel. Näiteks oleme juba teile teatanud, et mängijad tõestasid Albert Einsteini teooria ebatäpsust ning hiljuti avaldas teadlaste grupp andmeid projekti kohta, kus mängude armastajad aitavad teadlastel uurida aju tööd ja teha isegi teaduslikke avastusi.

Esimene migreeniravim maailmas oli heaks kiidetud - ja see on kallis

FDA kiitis heaks esimese ravimi, mis on spetsiaalselt ette nähtud migreeni vältimiseks. Ja kuigi ravim võib anda märku sellest, et see nõrgestav seisund - mis sageli ignoreeritakse - annab uue efektiivse ravi laine. Ravimifirmad Amgen ja Novartis ühiselt arendasid Aimovigi nime kandvat ravimit. See kasutab antikehasid, mis blokeerivad valgumolekuli toimet, millel on võtmeroll migreeni tekkimisel ja säilitamisel, tuntud kui kaltsitoniingeen, CGRP. Kolmes III faasi kliinilises uuringus, mis viisid ravimi heakskiitmiseni, leiti Aimovig'iga ravitud inimestel migreeni esinemissageduse langus ühe või kahe ja poole korra kuus, võrreldes platseeborühma kontrollrühmaga, ilma igasuguse ravita. kõrvaltoimed. Loe edasi →

Tõhus meetod mootori funktsiooni taastamiseks pärast insulti on tuvastatud.

Mitmete kümnete uuringute ja teaduslike väljaannete analüüs on aidanud Ameerika teadlastel välja selgitada efektiivne meetod jäsemete taastamiseks pärast insulti. Teadlased jagasid oma järeldusi ajakirjas European Journal of Neurology.

Aju müstika: kas aju on hing, arvuti või midagi enamat?

Rohkem kui 2000 aastat tagasi hämmastas vaimu poolmüütiline isa Hippokratese oma aja mõtlejaid julge avaldusega inimese teadvuse olemuse kohta. Vastuseks psüühika ilmingute üleloomulikele selgitustele nõudis Hippokrates, et "mitte enam kui aju tulevad rõõm, rõõm, naer ja rivaalitsemine, kurbus, põlgus, kurbus ja kurvastamine." Tänapäeva ajastul võis Hippokrates väljendada oma mõtteid Twitteris: "Me oleme meie aju." Ja see sõnum resoneerib täielikult viimaseid suundumusi kõikides aju süüdistades, vaimsete häirete ülevaatamisel ajuhaigustena ja juba futuristlikus valguses, kujutades ette aju parandamise või säilitamise. Loovusest uimastisõltuvuseni ei saa vaevu leida vähemalt ühte inimkäitumise aspekti, mis ei ole seotud aju tööga. Aju võib nimetada hinge kaasaegseks asendamiseks.

Teadlased tegid esimest korda mälu siirdamist

Transplantaat meie päeval ei üllata kedagi. Arstid on õppinud enamikku meie keha elunditest ja kudedest siirdama. Aga mida sa ütleksid, kui teile öeldakse, et mitte ainult kehaosa, vaid ka mälu on võimalik siirdada? Alles hiljuti tundus see võimatuna, kuid nagu eNeuro toimetajate sõnul teatas, tegi Ameerika Ühendriikide teadlaste rühm hiljuti just seda.

Joogid olid õiged: õige hingamine valgustab meelt

Joogid ja budistid on juba ammu väitnud, et meditatsioon ja iidsed hingamispraktikad, nagu pranayama, tugevdavad meie võimet keskenduda ülesannetele. Dublinis kolmes kolledži teadlaste uus uuring selgitab esimest korda hingamise ja tähelepanu vahelist neurofüsioloogilist seost. Respiratoorsel meditatsioonil ja jooga hingamisel on kognitiivsete funktsioonide jaoks palju eeliseid, sealhulgas suurenenud võime keskenduda, elavdada, saada positiivseid emotsioone, vähendada emotsionaalset temperatuuri ja palju muud. Praeguseks ei ole siiski kindlaks tehtud neurofüsioloogilist seost hingamise ja aju funktsioonide vahel.

Teadlased: "2018. aasta lõpuks kasvatame neandertali aju"

Umbes Homo perekonna iidsetest esindajatest, neandertallastest, teame ainult luude, kivimaalide ja teadlaste eelduste põhjal. Kuid varsti on võimalik põhjalikumalt hinnata mitte ainult fossiilseid jääke, vaid ka iidsete inimeste tegelikke anatoomilisi struktuure. Lõppude lõpuks kavatseb antropoloog Svante Paabo juhitud teadlaste rühm kasvada ja uurida neandertali aju käesoleva aasta lõpuks.

Kuidas inimese aju: osakonnad, struktuur, funktsioon

Kesknärvisüsteem on keha osa, mis vastutab meie välise maailma ja iseenda tajumise eest. See reguleerib kogu keha tööd ja tegelikult on see, mida me nimetame “I”. Selle süsteemi peamine organ on aju. Uurige, kuidas ajuosad on paigutatud.

Inimese aju funktsioonid ja struktuur

See organ koosneb peamiselt rakkudest, mida nimetatakse neuroniteks. Need närvirakud toodavad elektrilisi impulsse, mis muudavad närvisüsteemi tööks.

Neuronite tööd pakuvad neurogliarakud - need moodustavad peaaegu poole KNS rakkude koguarvust.

Neuronid omakorda koosnevad kahest tüübist ja protsessist: aksonid (edastavad impulss) ja dendriidid (impulss). Närvirakkude kehad moodustavad koe massi, mida nimetatakse halliks, ja nende aksonid on kootud närvikiududesse ja on valged.

  1. Tahke. See on õhuke kile, mis on ühest küljest kolju luukoe kõrval ja teine ​​otse ajukoorele.
  2. Pehme See koosneb lahtisest kangast ja ümbritseb tihedalt poolkera pinda, sisenedes kõikidesse pragudesse ja soonedesse. Selle funktsioon on elundi verevarustus.
  3. Spider Web. Asub esimese ja teise korpuse vahel ja viib läbi tserebrospinaalvedeliku (tserebrospinaalvedelik). Alkohol on loomulik amortisaator, mis kaitseb aju liikumise ajal kahjustuste eest.

Järgmisena vaatleme lähemalt, kuidas inimese aju toimib. Aju morfofunktsionaalsed omadused on samuti jagatud kolmeks osaks. Alumist osa nimetatakse teemantiks. Kui romboidne osa algab, lõpeb seljaaju - see läheb süljele ja tagumisse (ponsid ja väikeajad).

Sellele järgneb keskjoon, mis ühendab alumise osa peamise närvikeskusega - eesmise osa. Viimane hõlmab terminali (aju poolkerad) ja dienkefalooni. Aju-poolkerakeste põhifunktsioonid on kõrgema ja madalama närvisüsteemi aktiivsus.

Lõplik aju

See osa on suurim (80%) võrreldes teistega. See koosneb kahest suurest poolkerast, neid ühendavast korpuskallust ja lõhnakeskusest.

Kõikide mõtlemisprotsesside moodustumise eest vastutavad vasak- ja vasakpoolsed aju-poolkerad. Siin on suurim neuronite kontsentratsioon ja nende vahel on kõige keerulisemad seosed. Poolkera jagava pikisuunalise soone sügavusel on valge materjali tihe kontsentratsioon - corpus callosum. See koosneb närvikiudude komplekssetest plexustest, mis põimivad erinevaid närvisüsteemi osi.

Valge aine sees on neuroneid, mida nimetatakse basaalganglionideks. Aju „transpordi ristmiku” lähedus võimaldab nendel vormidel reguleerida lihastoonust ja viia läbi kohesed refleksmootori vastused. Lisaks vastutavad basaalganglionid keerukate automaatsete toimingute moodustamise ja toimimise eest, osaliselt korrates väikeaju funktsioone.

Ajukoor

See väike hallikiht (kuni 4,5 mm) on kesknärvisüsteemi noorim vorm. Inimese kõrgema närvisüsteemi töö eest vastutab ajukoor.

Uuringud on võimaldanud meil kindlaks teha, millised ajukoored on arenenud arengu käigus suhteliselt hiljuti ja mis olid veel meie eelajaloolistes esivanemates:

  • neokortex on ajukoorme uus välimine osa, mis on selle peamine osa;
  • archicortex - vanem üksus, mis vastutab instinktiivse käitumise ja inimeste emotsioonide eest;
  • Paleocortex on kõige vanem ala, mis tegeleb vegetatiivsete funktsioonide kontrollimisega. Lisaks aitab see säilitada organismi sisemist füsioloogilist tasakaalu.

Eesmised lobid

Suurte poolkerakeste suurimad lõhed vastutavad keeruliste mootori funktsioonide eest. Vabatahtlikud liikumised on planeeritud aju esiosades ja siin asuvad ka kõnekeskused. Selles ajukoormuse osas toimub käitumise tahtlik kontroll. Esikaelaliste kahjustuste korral kaotab inimene oma tegude üle võimu, käitub antisotsiaalselt ja lihtsalt ebapiisavalt.

Okcipitaalsed lobid

Visuaalse funktsiooniga tihedalt seotud on nad optilise teabe töötlemise ja tajumise eest. See tähendab, et nad muudavad kogu nende valgussignaalide kogumi, mis sisenevad võrkkesta, sisukateks visuaalseteks piltideks.

Parietaalne lobes

Nad teostavad ruumianalüüsi ja töötlevad enamikke tundeid (puudutus, valu, "lihaste tunne"). Lisaks aitab see analüüsida ja integreerida erinevaid andmeid struktureeritud fragmentideks - võimet mõista oma keha ja külgi, võimet lugeda, lugeda ja kirjutada.

Ajaline lobes

Selles osas toimub audioinformatsiooni analüüs ja töötlemine, mis tagab kuulmise ja heli taju. Ajutised lobid on seotud erinevate inimeste nägude, samuti näoilmete ja emotsioonide äratundmisega. Siin on teave struktureeritud püsiva säilitamise jaoks ja seega rakendatakse pikaajalist mälu.

Lisaks sisaldavad ajutised lobid kõnekeskusi, mille kahjustamine põhjustab suulise kõne tajumist.

Saareosa

Seda peetakse vastutavaks teadvuse moodustumise eest inimeses. Empaatia, empaatia, muusika kuulamise ja naeru- ja nutthelide hetkedel on saareküla aktiivne töö. Samuti käsitleb see vastumeelsusi mustuse ja ebameeldivate lõhnade, sealhulgas kujuteldavate stiimulite suhtes.

Vahesaadused

Vahe aju toimib neuraalsete signaalide jaoks teatud tüüpi filtrina - see võtab kogu sissetuleva informatsiooni ja otsustab, kuhu see peaks minema. Koosneb alumisest ja tagumisest (talamus ja epithalamus). Endokriinne funktsioon on realiseeritud ka selles osas, s.t. hormonaalne metabolism.

Alumine osa koosneb hüpotalamusest. See väike tihe närvirakkude kimp mõjutab tohutult kogu keha. Lisaks kehatemperatuuri reguleerimisele kontrollib hüpotalamuse une ja ärkveloleku tsükleid. Samuti vabastab see nälga ja janu põhjustavaid hormone. Meelelahutuse keskmes reguleerib hüpotalamuse seksuaalset käitumist.

Samuti on see otseselt seotud ajuripatsiga ja närviline aktiivsus endokriinseks aktiivsuseks. Hüpofüüsi funktsioonid seisnevad omakorda organismi kõigi näärmete töö reguleerimises. Elektroonilised signaalid liiguvad hüpotalamusest aju hüpofüüsi, "tellides" selle tootmise, mille hormoonid tuleks alustada ja millised tuleb peatada.

Diencephalon sisaldab ka:

  • Talamus - see osa täidab "filtri" funktsioone. Siin töödeldakse visuaalsetest, kuulmis-, maitse- ja puutetundlikest retseptoritest saadud signaale ja levitatakse vastavatele osakondadele.
  • Epithalamus - toodab hormooni melatoniini, mis reguleerib ärkveloleku tsükleid, osaleb puberteedi protsessis ja kontrollib emotsioone.

Midbrain

See reguleerib peamiselt kuulmis- ja visuaalse refleksi aktiivsust (õpilase kitsenemine eredas valguses, pea pööramine valju heli allikaks jne). Pärast talamuse töötlemist läheb see keskjoonesse.

Siin töödeldakse edasi ja alustatakse tajumise protsessi, mõtestatud heli ja optilise pildi kujunemist. Selles lõigus on silmade liikumine sünkroniseeritud ja binokulaarne nägemine tagatud.

Keskjoon hõlmab jalgu ja quadlochromiat (kaks kuuldavat ja kahte visuaalset pilti). Toas on keskjõu õõnsus, mis ühendab vatsakesi.

Medulla oblongata

See on närvisüsteemi iidne kujunemine. Medulla oblongata funktsioonid on pakkuda hingamist ja südamelööki. Kui te seda ala kahjustate, sureb inimene - hapnik ei voola verre, mida süda enam ei pumpa. Selle osakonna neuronites algavad sellised kaitsvad refleksid nagu aevastamine, vilkumine, köha ja oksendamine.

Medulla oblongata struktuur sarnaneb pikliku pirniga. Selle sees on halltooni tuum: retikulaarne moodustumine, mitme kraniaalnärvi tuum ja neuraalsed sõlmed. Püramiidi närvirakkudest koosneva medulla püramiid täidab juhtivat funktsiooni, mis ühendab ajukooret ja seljapiirkonda.

Medulla oblongata kõige olulisemad keskused on:

  • hingamise reguleerimine
  • vereringe reguleerimine
  • mitmete seedesüsteemi funktsioonide reguleerimine

Tagumine aju: sild ja väikeaju

Tagajärjekorra struktuuri kuuluvad poonid ja väikeaju. Silla funktsioon on väga sarnane selle nimega, kuna see koosneb peamiselt närvikiududest. Aju sild on sisuliselt „maantee”, mille kaudu keha signaalid aju läbivad ja impulssid närvikeskusest kehasse. Tõusulisel viisil liigub aju sild keskjoonesse.

Aju on palju laiem valikuvõimalus. Aju funktsioonid on keha liikumise koordineerimine ja tasakaalu säilitamine. Lisaks ei reguleeri väikeaju mitte ainult keerulisi liikumisi, vaid aitab kaasa ka luu- ja lihaskonna süsteemi kohandumisele mitmesugustes häiretes.

Näiteks näitasid invertsoskoopi (ümbritseva maailma kujutist kujundavad eriklaasid) kasutamise katsed, et just väikeala ülesanded on vastutavad mitte ainult selle eest, et inimene hakkab kosmoses orienteeruma, vaid näeb ka maailma õigesti.

Anatoomiliselt kordab väikeaju suurte poolkerakeste struktuuri. Väljaspool on kaetud halli materjali kihiga, mille all on valge klaster.

Limbiline süsteem

Limbilist süsteemi (ladinakeelsest sõnast "limbus - edge") nimetatakse kogumite kogumiks, mis ümbritseb pagasiruumi ülemist osa. Süsteem sisaldab lõhnakeskusi, hüpotalamust, hipokampust ja võrkkesta moodustumist.

Limbilise süsteemi põhifunktsioonid on organismi kohanemine muutustega ja emotsioonide reguleerimisega. See moodustumine aitab kaasa püsivate mälestuste loomisele mälu ja sensoorsete kogemuste vaheliste seoste kaudu. Tihedad seosed lõhnakeskkonna ja emotsionaalsete keskuste vahel toovad kaasa asjaolu, et lõhn põhjustab meile nii tugevaid ja selgeid mälestusi.

Kui loetate limbilise süsteemi peamised funktsioonid, vastutab ta järgmiste protsesside eest:

  1. Lõhnaaine
  2. Teabevahetus
  3. Mälu: lühiajaline ja pikaajaline
  4. Rahulik uni
  5. Osakondade ja asutuste tõhusus
  6. Emotsioonid ja motiveeriv komponent
  7. Intellektuaalne tegevus
  8. Endokriinsed ja vegetatiivsed
  9. Osaliselt seotud toidu ja seksuaalse instinktiga

Aju: struktuur ja funktsioonid, üldine kirjeldus

Aju on peamine elusorganismi funktsioonide regulaator. See on üks kesknärvisüsteemi elemente. Aju struktuur ja funktsioon - arstide uuringud tänaseni.

Üldine kirjeldus

Inimese aju koosneb 25 miljardist neuronist. Need on need rakud, mis esindavad halli materjali. Aju on kaetud koorega:

  • tahke;
  • pehme;
  • arachnoid (nn tserebrospinaalvedelik ringleb oma kanalites, mis on tserebrospinaalvedelik). Alkohol on amortisaator, mis kaitseb aju šoki eest.

Hoolimata asjaolust, et naiste ja meeste ajud on võrdselt arenenud, on sellel erinev mass. Niisiis, tugevama soo esindajates on selle kaal keskmiselt 1375 g, samas kui naistel on see 1245 g. Aju kaal on umbes 2% inimese normaalse ehituse kaalust. On kindlaks tehtud, et inimese vaimse arengu tase ei ole mingil viisil seotud tema kaaluga. See sõltub aju poolt loodud ühenduste arvust.

Aju rakud on neuronid, mis tekitavad ja edastavad impulsse ja gliaid, mis täidavad täiendavaid funktsioone. Aju sees on õõnsused, mida nimetatakse vatsakesteks. Seotud kolju närvid (12 paari) lahkuvad sellest keha erinevatesse osadesse. Aju funktsioonid on väga erinevad, millest sõltub organismi elutegevus.

Struktuur

Allpool toodud aju piltide struktuuri saab vaadelda mitmel aspektil. Nii on selles 5 peamist ajuosa:

  • lõplik (80% kogu massist);
  • vaheühend;
  • tagumine (väikeaja ja sild);
  • keskkond;
  • piklik.

Samuti on aju jagatud 3 osaks:

  • suured poolkerad;
  • aju vars;
  • väikeaju.

Aju struktuur: joonistamine osakondade nimega.

Aju struktuur: osakondade nimed

Lõplik aju

Aju struktuuri ei saa lühidalt kirjeldada, kuna selle struktuuri uurimata on võimatu selle funktsioone mõista. Lõplik aju venitati okcipitalist eesmise luu külge. See eristab kahte suurt poolkera: vasakut ja paremat. See erineb teistest ajuosadest suure hulga konvektsioonide ja vagude juuresolekul. Aju struktuur ja areng on omavahel tihedalt seotud. Eksperdid eristavad 3 ajukooret:

  • iidne, kuhu kuulub lõhna tuberklee; eesmine aine; lunate, podsolic ja lateraalne podsoolne gyrus;
  • vana, mis hõlmab hipokampust ja hambakivi (fascia);
  • uus, mida esindab ülejäänud koor.

Tserebraalsete poolkera struktuur: need on eraldatud pikisuunalise soonega, mille sügavus on kaar ja korpus. Nad ühendavad aju poolkera. Corpus callosum on närvikiududest koosnev uus koor. Allpool on kaar.

Aju poolkera struktuur on esitatud mitmetasandilise süsteemina. Niisiis eristavad nad lõhesid (parietaalne, eesmine, okcipital, temporaalne), ajukooret ja alakooret. Aju poolkerad täidavad mitmeid funktsioone. Parem poolkera kontrollib keha vasaku poole ja vasakut - paremat. Nad täiendavad üksteist.

Ajukooreks on 3 mm paksune pinnakiht, mis katab poolkera. See koosneb protsessidega vertikaalselt orienteeritud närvirakkudest. Sellel on ka afferentsed ja efferentsed närvikiud, neuroglia. Mis on ajukoor? See on horisontaalse kihistusega keeruline struktuur. Ajukoorme struktuur: eristatakse 6 kihti (välised granulaarsed, molekulaarsed, välised püramiidsed, sisemised graanulid, sisepüramiidsed, spindlikujulised rakud), mille tihedus, laius, suurus ja kuju on erinevad. Närvikiudude vertikaalsete kimpude, neuronite ja nende protsesside tõttu, mis on koorikus olemas, on see vertikaalne. Inimese ajukoorel, millel on rohkem kui 10 miljardit neuroni, on pindala umbes 2200 ruutmeetrit.

Ajukoor on vastutav mitme konkreetse funktsiooni eest. Lisaks on iga selle osa vastutav midagi muud. Ajukoorme funktsioonid:

  • ajaline lõhe - kuulmine ja lõhn;
  • okulaarne - nägemine;
  • parietaalne - puudutus ja maitse;
  • eesmine - kõne, liikumine, keeruline mõtlemine.

Igal neuronil (hall) on kuni 10 tuhat kontakti teiste neuronitega. Aju valge aine on närvikiud. Teatud osa neist ühendab mõlemad poolkerad. Aju-poolkerakeste valge aine koosneb 3 tüüpi kiududest:

  • seos (erinevate kortikaalsete alade ühendamine samas poolkeras);
  • commissural (poolkerade ühendamine);
  • projektsiooniteed (analüsaatorite teed, mis seovad ajukooret madalamate vormidega).
    Aju poolkera sees on hallid ained (basaalganglionid). Nende ülesandeks on teabe edastamine. Inimese aju valge aine võtab ruumi basaalsete tuumade ja ajukoorme vahel. See eristab nelja osa (sõltuvalt asukohast):
  • asuvad vagude vahelistes konvoluutides;
  • saadaval poolkera välispindadel;
  • osa sisemisest kapslist;
  • corpus callosumis.

Aju valget ainet moodustavad närvikiud, mis ühendavad mõlema poolkera ja selle aluseks olevate vormide konvektsioonide ajukoort. Alamkortikaalne aju koosneb subkortikaalsetest tuumadest. Lõplik aju kontrollib kõiki inimelu ja intellektuaalsete võimete jaoks olulisi protsesse.

Vahesaadused

See koosneb vatsakese (hüpotalamuse) ja selja (metatalamuse, talamuse, epiteedi) osadest. Talamus on vahendaja, milles kõik saadud stiimulid on suunatud aju poolkerakestele. Seda nimetatakse sageli visuaalseks künniseks. Tänu temale kohaneb keha kiiresti muutuva väliskeskkonnaga. Talamus on seotud limbilise süsteemi ajujõuga.

Hüpotalam on subkortikaalne keskus, kus toimub vegetatiivsete funktsioonide reguleerimine. Selle toime ilmneb endokriinsete näärmete ja närvisüsteemi kaudu. Ta on seotud teatud endokriinsete näärmete ja ainevahetuse reguleerimisega. Selle all on ajuripats. Tänu temale on reguleeritud kehatemperatuur, seedetrakti ja südame-veresoonkonna süsteemid. Hüpotalamus reguleerib ärkvelolekut ja une, vormib joomist ja söömist.

Tagumine aju

See osa koosneb eesmisest sillast ja selle taga paiknevast väikeajast. Aju silla struktuur: selle seljapind on kaetud väikeajaga ja kõhul on kiuline struktuur. Need kiud suunatakse põiki. Nad liiguvad silla mõlemalt küljelt aju keskjoonele. Sillal on valge paks rull. See asub ülalpool mündi kohal. Sibula-silla korpuse juurte juured lähevad. Hind-aju: struktuur ja funktsioon - silla esiosas on märgatav, et see koosneb suurest ventralisest (anterior) ja väikesest selja (tagumisest) osast. Nende vaheline piir on trapetsikujuline keha. Selle paksud põikiud kuuluvad kuulmisraja. Tagumine aju tagab juhtiva funktsiooni.

Aju, mida sageli nimetatakse väikeseks ajus, asub silla taga. See katab rombikujulise fossa ja võtab peaaegu kogu kolju tagumiku fossa. Selle mass on 120-150 g. Suured poolkerad ripuvad aju ülalpool, mis on eraldatud sellest aju põiki. Aju alumine pind on külgneva kõrvale. See eristab 2 poolkera, samuti ülemist ja alumist pinda ning uss. Nende vahelist piiri nimetatakse sügavaks horisontaalseks vaheks. Aju pind on lõigatud paljude piludega, mille vahele jäävad medullaarse aine õhukesed servad (gyrus). Sügavate soonte vahel asuvad konvoluutrühmad on lobulid, mis omakorda moodustavad väikeala lobid (eesmine, lõhenev-nodulaarne, tagumine).

Ajus on 2 tüüpi aineid. Hall on perifeerias. See moodustab ajukoorme, millel on molekulaarne, pirnikujuline neuron ja granuleeritud kiht. Aju valge aine on alati ajukoorme all. Ajus on see aju. See tungib kõikidesse konvoluutidesse halli ainega kaetud valge triibu kujul. Aju valges olekus on hallid ained (tuum). Lõikel sarnaneb nende suhe puule. Meie liikumise koordineerimine sõltub väikeaju toimimisest.

Midbrain

See sektsioon paikneb silla esiservast papillaarsete kehade ja optiliste traktidega. Selles on tuumade klastreid, mida nimetatakse nelinurga mägedeks. Keskjoon on vastutav peidetud nägemuse eest. Samuti on selles orienteeruva refleksi keskpunkt, mis tagab keha pöörlemise terava müra suunas.

Medulla oblongata

See on seljaaju jätk. Aju ja seljaaju struktuuril on palju ühist. See saab selgeks, kui uuritakse põhjavee valget materjali. Aju valget ainet esindavad pikad ja lühikesed närvikiud. Hallained on esindatud tuumadena. See aju vastutab liikumise, tasakaalu, ainevahetuse reguleerimise, vereringe ja hingamise reguleerimise eest. Ta vastutab ka köha ja aevastamise eest.

Aju varre struktuur: see on seljaaju jätk, mis jaguneb kesk- ja tagapooleks. Pagasiruumi nimetatakse piklikuks, keskeks, dienkefaloniks ja sildaks. Aju varre struktuur on tõusev ja kahanev tee, mis ühendab selle aju ja seljaajuga. Ta kontrollib kõnet, hingamist ja südamelööki.

Teile Meeldib Epilepsia